Using Data Mining Techniques in Customer Segmentation
نویسندگان
چکیده
Data mining plays important role in marketing and is quite new. Although this field expands rapidly, data mining is still foreign issue for many marketers who trust only their experiences. Data mining techniques cannot substitute the significant role of domain experts and their business knowledge. In the other words, data mining algorithms are powerful but cannot effectively work without the active support of business experts. We can gain useful results by combining these techniques and business expertise. For instance ability of a data mining technique can be substantially increased by combining person experience in the field or information of business can be integrated into a data mining model to build a more successful result. Moreover, these results should always be evaluated by business experts. Thus, business knowledge can help and enrich the data mining results. On the other hand, data mining techniques can extract patterns that even the most experienced business people may have missed. In conclusion, the combination of business domain expertise with the power of data mining techniques can help organizations gain a competitive advantage in their efforts to optimize customer management. Clustering algorithms, a group of data mining technique, is one of most common used way to segment data set according to their similarities. This paper focuses on the topic of customer segmentation using data mining techniques. In the other words, we theoretically discuss about customer relationship management and then utilize couple of data mining algorithm specially clustering techniques for customer segmentation. We concentrated on behavioral segmentation.
منابع مشابه
Customer Behavior Mining Framework (CBMF) using clustering and classification techniques
The present study proposes a Customer Behavior Mining Framework on the basis of data mining techniques in a telecom company. This framework takes into account the customers’ behavior patterns and predicts the way they may act in the future. Firstly, clustering technique is used to implement portfolio analysis and previous customers are divided based on socio-demographic features using k</em...
متن کاملIntegrating AHP and data mining for effective retailer segmentation based on retailer lifetime value
Data mining techniques have been used widely in the area of customer relationship management (CRM). In this study, we have applied data mining techniques to address a problem in business-to-business (B2B) setting. In a manufacturer-retailer-consumer chain, a manufacturer should improve its relationship with retailers to continue its business. Segmentation is a useful tool for identifying groups...
متن کاملA Hybrid Data Mining Model for Intelligent Customer Segmentation: The Case of Banking Industry
Customer segmentation is a prerequisite to all three phases of customer relationship management which consists of customer acquisition, customer retention and customer development. Input variables which are used in clustering techniques determine which phase of customer relationship management it is dealing with. As a result this paper aims at a review on the input variables used in customer se...
متن کاملDynamic segmentation and ranking approach of customers and identifying their behavioral mobility using data mining techniques in Kargaran Welfare Bank
Nowadays, identifying, determining the value and segmentation of customers is essential for a bank. Dynamic classification of workers' welfare bank customers and identification of their behavioral mobility between different departments in a specific period of time using data techniques Kaveh. In this regard, transaction data of customers of this bank was considered as a statistical community. I...
متن کاملApplication of text mining for customer evaluations in commercial banking
Nowadays customer attrition is increasingly serious in commercial banks. To combat this problem roundly, mining customer evaluation texts is as important as mining customer structured data. In order to extract hidden information from customer evaluations, Textual Feature Selection, Classification and Association Rule Mining are necessary techniques. This paper presents all three techniques by u...
متن کامل